consistently complete - significado y definición. Qué es consistently complete
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es consistently complete - definición

COMPLEXITY CLASS
PSPACE complete; Pspace-complete; PSPACE-Complete; Pspace-Complete

consistently complete      
complete graph         
SIMPLE UNDIRECTED GRAPH IN WHICH EVERY PAIR OF DISTINCT VERTICES IS CONNECTED BY A UNIQUE EDGE
Full graph; Complete Digraph; Complete digraph; K n; Tetrahedral Graph; Complete graphs
A graph which has a link between every pair of nodes. A complete bipartite graph can be partitioned into two subsets of nodes such that each node is joined to every node in the other subset. (1995-01-24)
Complete (complexity)         
NOTION OF THE "HARDEST" OR "MOST GENERAL" PROBLEM IN A COMPLEXITY CLASS
Complete problem; Hard (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.

Wikipedia

PSPACE-complete

In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.

Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games.